From 706a4547c4d6f9462e49249430dfef67db48a138 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=C3=81lvaro=20=40=20KASPARYAN-PC?= Date: Fri, 3 Jan 2025 18:44:47 -0300 Subject: [PATCH] vault backup: 2025-01-03 18:44:47 --- .../Movimento uniforme e uniformemente variado.md | 94 +++++++++---------- 1 file changed, 47 insertions(+), 47 deletions(-) diff --git a/Física/1. Tópicos Fundamentais/Exercícios/Cinemática/Movimento uniforme e uniformemente variado.md b/Física/1. Tópicos Fundamentais/Exercícios/Cinemática/Movimento uniforme e uniformemente variado.md index f177105..2b0926e 100644 --- a/Física/1. Tópicos Fundamentais/Exercícios/Cinemática/Movimento uniforme e uniformemente variado.md +++ b/Física/1. Tópicos Fundamentais/Exercícios/Cinemática/Movimento uniforme e uniformemente variado.md @@ -3,15 +3,15 @@ Que distância seu carro percorre a $88km/h$ durante $1s$ em que você olha um a --- ### 📄 Solução 1 - $\LARGE v=88km/h$ - $\LARGE t=1s$ + $v=88km/h$ + $t=1s$ - $\LARGE \Delta S = v \cdot \Delta t \Rightarrow$ - $\LARGE S_f - S_0 = v \cdot (t_f - t_0)$ - $\LARGE S_f - S_0 = 88km/h \cdot 1s$ - $\LARGE S_f - S_0 = \dfrac{88}{3,6} m*s^{-1} \cdot 1s$ - $\LARGE S_f - S_0 = \dfrac{88}{3,6} m$ - $\LARGE \Delta S = \dfrac{88}{3,6} m = 24,4\cdots m$ + $\Delta S = v \cdot \Delta t \Rightarrow$ + $S_f - S_0 = v \cdot (t_f - t_0)$ + $S_f - S_0 = 88km/h \cdot 1s$ + $S_f - S_0 = \dfrac{88}{3,6} m*s^{-1} \cdot 1s$ + $S_f - S_0 = \dfrac{88}{3,6} m$ + $\Delta S = \dfrac{88}{3,6} m = 24,4\cdots m$ 🧐 **Resposta:** $24,4m$ @@ -25,85 +25,85 @@ Que distância seu carro percorre a $88km/h$ durante $1s$ em que você olha um a --- ### 📄 Solução 7.1: -$\LARGE v_1 = 56,3km/h$ -$\LARGE v_2 = 88,5km/h$ +$v_1 = 56,3km/h$ +$v_2 = 88,5km/h$ -$\LARGE v_m = \dfrac{v_1 + v_2}{2}$ -$\LARGE v_m = \dfrac{56,3km/h + 88,5km/h}{2}$ -$\LARGE v_m = \dfrac{144,8km/h}{2} = 72,4km/h$ +$v_m = \dfrac{v_1 + v_2}{2}$ +$v_m = \dfrac{56,3km/h + 88,5km/h}{2}$ +$v_m = \dfrac{144,8km/h}{2} = 72,4km/h$ --- ### 📄 Solução 7.2 -$\LARGE v_1 = 56,3km/h = \dfrac{\Delta S}{t_1 \cdot 2}$ +$v_1 = 56,3km/h = \dfrac{\Delta S}{t_1 \cdot 2}$ -$\LARGE v_2 = 88,5km/h = \dfrac{\Delta S}{t_2 \cdot 2}$ +$v_2 = 88,5km/h = \dfrac{\Delta S}{t_2 \cdot 2}$ -$\LARGE v_m = \dfrac{\Delta S}{\Delta t}$ +$v_m = \dfrac{\Delta S}{\Delta t}$ -$\LARGE t_1 = \dfrac{\Delta S}{v_1 \cdot 2}$ +$t_1 = \dfrac{\Delta S}{v_1 \cdot 2}$ -$\LARGE t_2 = \dfrac{\Delta S}{v_2 \cdot 2}$ +$t_2 = \dfrac{\Delta S}{v_2 \cdot 2}$ -$\LARGE v_m = \dfrac{\Delta S}{\dfrac{\Delta S}{v_1 \cdot 2} + \dfrac{\Delta S}{v_2 \cdot 2}}$ +$v_m = \dfrac{\Delta S}{\dfrac{\Delta S}{v_1 \cdot 2} + \dfrac{\Delta S}{v_2 \cdot 2}}$ -$\LARGE v_m = \dfrac{\Delta S}{\Delta S \cdot (\dfrac{1}{v_1 \cdot 2} + \dfrac{1}{v_2 \cdot 2})}$ +$v_m = \dfrac{\Delta S}{\Delta S \cdot (\dfrac{1}{v_1 \cdot 2} + \dfrac{1}{v_2 \cdot 2})}$ -$\LARGE v_m = \dfrac{1}{(\dfrac{1}{v_1 \cdot 2} + \dfrac{1}{v_2 \cdot 2})}$ +$v_m = \dfrac{1}{(\dfrac{1}{v_1 \cdot 2} + \dfrac{1}{v_2 \cdot 2})}$ -$\LARGE v_m = \dfrac{1}{\dfrac{1}{56,3km/h \cdot 2} + \dfrac{1}{88,5km/h \cdot 2}}$ +$v_m = \dfrac{1}{\dfrac{1}{56,3km/h \cdot 2} + \dfrac{1}{88,5km/h \cdot 2}}$ -$\LARGE v_m = \dfrac{1}{\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ +$v_m = \dfrac{1}{\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ -$\LARGE v_m = \dfrac{1}{\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ +$v_m = \dfrac{1}{\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ -$\LARGE \dfrac{1}{v_m} = {\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ +$\dfrac{1}{v_m} = {\dfrac{1}{112,6km/h} + \dfrac{1}{177km/h}}$ -$\LARGE \dfrac{1}{v_m} = {\dfrac{177km/h}{112,6km/h \cdot 177km/h} + \dfrac{112,6km/h}{112,6km/h \cdot 177km/h}}$ +$\dfrac{1}{v_m} = {\dfrac{177km/h}{112,6km/h \cdot 177km/h} + \dfrac{112,6km/h}{112,6km/h \cdot 177km/h}}$ -$\LARGE \dfrac{1}{v_m} = {\dfrac{177km/h + 112,6km/h}{112,6km/h \cdot 177km/h}}$ +$\dfrac{1}{v_m} = {\dfrac{177km/h + 112,6km/h}{112,6km/h \cdot 177km/h}}$ -$\LARGE \dfrac{1}{v_m} = {\dfrac{289,6km * h^{-1}}{19930,2km^2 h^{-2}}}$ +$\dfrac{1}{v_m} = {\dfrac{289,6km * h^{-1}}{19930,2km^2 h^{-2}}}$ -$\LARGE v_m = \dfrac{19930,2km^2 h^{-2}}{289,6km * h^{-1}}$ +$v_m = \dfrac{19930,2km^2 h^{-2}}{289,6km * h^{-1}}$ -$\LARGE v_m = \dfrac{19930,2km/h}{289,6}$ +$v_m = \dfrac{19930,2km/h}{289,6}$ -$\LARGE v_m = 68,819751381 km/h$ +$v_m = 68,819751381 km/h$ --- ### 📄 Solução 7.3 -$\LARGE v_{m_{ida}} = 72,4 km/h$ -$\LARGE v_{m_{volta}} = 68,82 km/h$ +$v_{m_{ida}} = 72,4 km/h$ +$v_{m_{volta}} = 68,82 km/h$ -$\LARGE v_m = \dfrac{v_{m_{ida}} * t_{ida} + v_{m_{volta}} * t_{volta}}{t_{ida} + t_{volta}}$ +$v_m = \dfrac{v_{m_{ida}} * t_{ida} + v_{m_{volta}} * t_{volta}}{t_{ida} + t_{volta}}$ -$\LARGE v_m = \dfrac{2d}{t_{ida} + t_{volta}}$ +$v_m = \dfrac{2d}{t_{ida} + t_{volta}}$ -$\LARGE v_{ida} = \dfrac{d}{t_{ida}} \Rightarrow t_{ida} = \dfrac{d}{v_{ida}}$ +$v_{ida} = \dfrac{d}{t_{ida}} \Rightarrow t_{ida} = \dfrac{d}{v_{ida}}$ -$\LARGE v_{volta} = \dfrac{d}{t_{volta}} \Rightarrow t_{volta} = \dfrac{d}{v_{volta}}$ +$v_{volta} = \dfrac{d}{t_{volta}} \Rightarrow t_{volta} = \dfrac{d}{v_{volta}}$ -$\LARGE v_m = \dfrac{2d}{\dfrac{d}{v_{ida}} + \dfrac{d}{v_{volta}}}$ +$v_m = \dfrac{2d}{\dfrac{d}{v_{ida}} + \dfrac{d}{v_{volta}}}$ -$\LARGE v_m = \dfrac{2}{\dfrac{1}{v_{ida}} + \dfrac{1}{v_{volta}}}$ +$v_m = \dfrac{2}{\dfrac{1}{v_{ida}} + \dfrac{1}{v_{volta}}}$ -$\LARGE v_m = \dfrac{2}{\dfrac{1}{72,4} + \dfrac{1}{68,82}}$ +$v_m = \dfrac{2}{\dfrac{1}{72,4} + \dfrac{1}{68,82}}$ -$\LARGE \dfrac{1}{v_m} = \dfrac{\dfrac{1}{72,4} + \dfrac{1}{68,82}}{2}$ +$\dfrac{1}{v_m} = \dfrac{\dfrac{1}{72,4} + \dfrac{1}{68,82}}{2}$ -$\LARGE \dfrac{2}{v_m} = \dfrac{1}{72,4} + \dfrac{1}{68,82}$ +$\dfrac{2}{v_m} = \dfrac{1}{72,4} + \dfrac{1}{68,82}$ -$\LARGE \dfrac{2}{v_m} = \dfrac{68,82}{68,82 * 72,4} + \dfrac{72,4}{68,82 * 72,4}$ +$\dfrac{2}{v_m} = \dfrac{68,82}{68,82 * 72,4} + \dfrac{72,4}{68,82 * 72,4}$ -$\LARGE \dfrac{2}{v_m} = \dfrac{68,82}{4982,568} + \dfrac{72,4}{4982,568}$ +$\dfrac{2}{v_m} = \dfrac{68,82}{4982,568} + \dfrac{72,4}{4982,568}$ -$\LARGE \dfrac{2}{v_m} = \dfrac{141,22}{4982,568}$ +$\dfrac{2}{v_m} = \dfrac{141,22}{4982,568}$ -$\LARGE \dfrac{v_m}{2} = \dfrac{4982,568}{141,22} = 35,282311287$ +$\dfrac{v_m}{2} = \dfrac{4982,568}{141,22} = 35,282311287$ -$\LARGE v_m = 35,282311287 * 2 = 70,56 km/h$ +$v_m = 35,282311287 * 2 = 70,56 km/h$ --- ## 📌 Questão 9